
What is Sycl

André Cerqueira

FCUP

2024

Este trabalho foi financiado por: Projeto 10110190 – EUROCC2, com apoio financeiro da FCT/MCTES através de
fundos nacionais (PIDDAC).



What is Sycl

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms



What is Sycl

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms

▶ SYCL allows the
programmer to write both
host and device code in the
same C++ source file.

▶ This requires two
compilation passes; one for
the host and one for the
device code



What is Sycl

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms
▶ Platform/device selection
▶ Dependency management and scheduling
▶ Buffer creation and data movement



What is Sycl

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms
▶ Supports standard C++ features like:

▶ Templates
▶ classes
▶ operator overloading
▶ lambdas

▶ It’s basically standard C++ code



What is Sycl

SYCL is a single source, high-level, standard C++ programming
model, that can target a range of heterogeneous platforms
▶ Sycl can target any device supported by its backend
▶ Current implementations support backends such as:

▶ OpenCL
▶ CUDA (Nvidia)
▶ HIP (AMD)
▶ OpenMp
▶ and others !



Sycl Implementations



Hello World

#include <iostream>
#include <sycl/sycl.hpp>
using namespace sycl;

const std::string secret{"Ifmmp-!xpsme\"\012J(n!tpssz-!Ebwf/!"
"J(n!bgsbje!J!dbo(u!ep!uibu/!.!IBM\01"};

const auto sz = secret.size();

int main() {
queue q;

char *result = malloc_shared<char>(sz, q);
std::memcpy(result, secret.data(), sz);

q.parallel_for(sz, [=](auto &i) { result[i] -= 1; }).wait();

std::cout << result << "\n";
free(result, q);
return 0;

}



Let’s Explore The Code

This Hello World introduces us to a number of fundamental
concepts in SYCL:



Let’s Explore The Code

▶ Host and Device Code are in the same source code
▶ Thanks to the implementation of unified shared memory, we

are able to employ a pointer-based method for managing
memory, which seamlessly operates on both the host and
devices. (We will cover this topic again later).

▶ A queue is the system we use to coordinate tasks in the
devices.

▶ actions are submitted to queues that then runs in the
specified device. In the Hello World the action is parallel for

▶ Inside actions we execute Kernels
▶ Actions are performed in an asynchronous manner. The

host adds tasks to a queue and continues with its other
responsibilities. In case we require the results of an action, we
must patiently wait for its completion.


