
Queues, Command Groups, and Kernels
Heterogeneous Programming with SYCL

André Cerqueira

November 18, 2024

Funded by Project 10110190 – EUROCC2, with financial support from FCT/MCTES through national funds
(PIDDAC).



Session Objectives

▶ Understand how work is organized in SYCL applications.

▶ Learn about queues and their role in execution.

▶ Explore command groups and task graphs.

▶ Queue actions: single task, parallel for, and parallel for work
group.

▶ Learn kernel programming: lambdas and function objects.

▶ Analyze memory operations: copy, update host, fill.



Queues in SYCL

▶ A queue connects the host to a single device.

▶ All actions (kernels, data transfers, etc.) are submitted to a
queue.

▶ Queues support:
▶ Asynchronous execution.
▶ Task graph generation.



Creating Queues

sycl::queue defaultQueue;

// Selecting a GPU if available

sycl::queue gpuQueue(sycl::gpu_selector{});

// Default device selection

sycl::queue deviceQueue(sycl::default_selector{});



Work Submission and Command Groups in SYCL

▶ How is work submitted in SYCL?
▶ Work is submitted to a queue, which connects the host

program to the device.
▶ We can submit code directly with actions as Q.parallel for(),

or
▶ We can use a more personalized submission, that defines a

command group, allowing us to manually specify the task
and its dependencies (Q.submit()).

▶ What is a Command Group?
▶ Encapsulates work submitted to the queue.
▶ Defined with a sycl::handler, which:

▶ Describes dependencies using accessors or events.
▶ Contains one action (e.g., kernel execution).

▶ Why are Command Groups important?
▶ Define dependencies, contributing to the task graph

construction.



Actions in SYCL: parallel for

▶ Actions: Operations submitted to the queue for execution.
▶ parallel for:

▶ Executes a kernel across a specified range of work-items.
▶ A single instruction, multiple thread (SIMT) abstraction.
▶ Takes two primary arguments:

▶ Execution Range: Defines the total number of work-items.
▶ Kernel Function: A callable, often a lambda function,

executed by each work-item.

▶ When to use?
▶ For data-parallel tasks where the same operation is applied to

many elements.



What is a Command Group?

▶ A command group is a unit of work submitted to the queue.

▶ Defined using a sycl::handler.
▶ What does a Command Group contain?

▶ Host Code: Defines dependencies, such as buffer access or
event-based dependencies.

▶ One Action: Examples include:
▶ parallel for: A data-parallel kernel execution.
▶ Memory operations, such as fill, copy, or update host.

▶ Why is it used?
▶ Enqueues work asynchronously to the queue.
▶ Contributes to task graph construction and scheduling.



Kernels in SYCL

▶ Kernels represent work executed on a device.
▶ Two main types of writing kernels:

▶ Lambdas: Concise, easy to write.
▶ Function objects: More verbose, but reusable.



Lambda Kernel Example

Q.submit([&](handler& cgh) {

cgh.parallel_for<>(

range<1>{1024}, [=](id<1> idx) { buffer_acc[idx] += 1; });

});



Function Object Kernel Example

class PlusOne {

accessor<int> acc;

public:

PlusOne(accessor<int> a) : acc(a) {}

void operator()(id<1> idx) { acc[idx] += 1; }

};

Q.submit([&](sycl::handler& cgh) {

accessor acc{buffer, cgh};

cgh.parallel_for<PlusOne>(range<1>{1024}, PlusOne(acc));

});



Kernel Restrictions

▶ Must return void.

▶ Cannot use RTTI (Run-Time Type Information) or dynamic
memory allocation.



SYCL Execution Model

▶ SYCL organizes work as a task graph.
▶ Task Graph (DAG: Directed acyclic graph):

▶ Nodes: Actions to be performed (e.g., kernel execution or
data transfer).

▶ Edges: Dependencies between actions (e.g., data
prerequisites).

▶ Runtime manages the task graph and executes asynchronously.



Benefits of Task Graphs

1. Automatic dependency resolution.

2. Optimized task scheduling.



In-Order and Out-of-Order Queues

▶ Out-of-Order Queues (default):
▶ The runtime decides task ordering based on data dependencies.
▶ Allows maximum flexibility for scheduling.

▶ In-Order Queues:
▶ Tasks execute sequentially in the order submitted.
▶ Limits scheduling flexibility but simplifies reasoning about task

order.

▶ Example:
sycl::queue ioQueue(sycl::property::queue::in_order());



Task Graph Visualization (Diagram)



How are Dependencies created

▶ Memory:
▶ The runtime infers dependencies based on buffer access modes.

▶ Event-Based:
▶ Use depends on to define dependencies explicitly.



Event Dependency Example

auto e1 = Q.parallel_for(range{N}, [=](id<1> id) {

a[id] = 1.0; // Task A

});

auto e2 = Q.parallel_for(range{N}, [=](id<1> id) {

b[id] = 2.0; // Task B

});

auto e3 = Q.parallel_for(range{N}, {e1, e2}, [=](id<1> id) {

a[id] += b[id]; // Task C depends on A and B

});

Q.single_task(e3, [=]() {

for (int i = 1; i < N; i++) a[0] += a[i]; // Task D

});



Memory Operations Overview

▶ Common operations:
▶ copy: Transfer data between buffers.
▶ fill: Initialize buffer with a value.
▶ update host: Synchronize device memory to host.

▶ You invoke them as methods on the queue class directly or on
the handler class.



Introducing SYCL Streams

▶ What are SYCL Streams?
▶ A mechanism for printing from device kernels to the host

console.
▶ Similar to C++ standard streams (std::cout).

▶ Why use SYCL Streams?
▶ Useful for debugging and logging within kernels.
▶ Provides insights into the behavior of device code.

▶ How do SYCL Streams work?
▶ Streams are created using sycl::stream.
▶ A stream object requires:

▶ Buffer size for storing output.
▶ Maximum size of a single message.
▶ A sycl::handler.



Stream Example

Q.submit([&](sycl::handler& cgh) {

sycl::stream out(1024, 256, cgh);

cgh.single_task<>([=]() {

out << "Hello, SYCL!" << sycl::endl;

});

});



Summary

▶ Queues organize and manage tasks.

▶ Task graph tracks dependencies and optimizes execution.

▶ Kernels can be defined using lambdas or function objects.

▶ Memory operations are essential for data movement.

▶ Synchronization ensures correct execution order.


