
Expressing Parallelism with SYCL: Data-Parallel
Kernels

André Cerqueira

November 25, 2024

This work was funded by Project 10110190 – EUROCC2, with financial support from FCT/MCTES through
national funds (PIDDAC).



Session Objectives

▶ Understand the concepts of work-items, work-groups, and
ND-ranges.

▶ Understand basic kernels using parallel for.

▶ Explore ND-range-based kernels to express locality and
parallelism.

▶ Study Matrix Multiplication: Basic and optimized
approaches.



What are Work-Items?

▶ Work-Item: The smallest unit of execution in SYCL,
analogous to a thread.

▶ Executes a single instance of the kernel function.

▶ Identified uniquely within the computational grid using global
IDs.

▶ Work-items are independent and cannot synchronize or share
data directly.



What are Work-Groups?

▶ Work-Group: A collection of work-items that can share data
and synchronize.

▶ Work-items in a group have access to:
▶ Local memory, shared within the group.
▶ Barriers and fences for synchronization.

▶ Identified by a unique group ID within the computational grid.

▶ Work-items in a group are scheduled concurrently on the same
compute unit.



What is an ND-Range?

▶ ND-Range: Defines the total grid of work-items and their
division into work-groups.

▶ Comprised of:
▶ Global Range: Total number of work-items.
▶ Local Range: Size of each work-group.



What is an ND-Range ?



Basic Data-Parallel Kernels

▶ Execution Range:
▶ Defined using a range object (1-, 2-, or 3-dimensional).
▶ Each element corresponds to a work-item.
▶ Work-items are uniquely addressable using:

▶ id: Lightweight, kernel-instance-specific index.
▶ item: Kernel-instance index with execution range info.



Basic Data-Parallel Kernels



Basic Kernel Example: Using id

Q.submit([&](handler &cgh) {

accessor acc { buf, cgh, write_only };

cgh.parallel_for(range<2> { n_work_items }, [=](id<2> idx) {

acc[idx] = 42.0;

});

});

▶ Scenario: Each kernel instance accesses a single element in
the buffer.

▶ Key Features:
▶ Lightweight and simple for parallel problems.
▶ Accessors index buffers directly using id.



Basic Kernel Example: Using item

Q.submit([&](handler &cgh) {

auto accA = bufA.get_access<access::mode::read>(cgh);

auto accB = bufB.get_access<access::mode::read>(cgh);

auto accR = bufR.get_access<access::mode::write>(cgh);

cgh.parallel_for(range { dataSize }, [=](item<1> itm) {

auto globalId = itm.get_id();

accR[globalId] = accA[globalId] + accB[globalId];

});

});

▶ Scenario: Accessing kernel instance and execution range
details.

▶ Key Features:
▶ item provides global ID and range info.
▶ Enables more flexibility for advanced computations.



When to Use id vs. item

▶ Choosing between id and item depends on the problem’s
complexity:

Feature id item

Kernel Instance Awareness Yes Yes
Access to Global Range Info No Yes
Use Case Simple operations Advanced opera-

tions
Overhead Minimal Slightly higher
Example acc[idx] =

value;

acc[it.get id()]

= sum;

▶ id: Lightweight and sufficient for simple problems.

▶ item: Adds flexibility for advanced use cases (e.g., vector
operations).



Matrix Multiplication

▶ Compute C [i , j ] =
∑

k A[i , k] · B[k, j ] using data-parallel
kernels.

▶ Each work-item computes one element of the resulting matrix.
▶ Challenges:

▶ Loading the operands multiple times (inefficient memory
usage).

▶ Lack of memory reuse without explicit locality handling.



Basic Data-Parallel Kernels



Basic Matrix Multiplication Kernel

Q.submit([&](handler &cgh) {

accessor A { bufA, cgh, read_only };

accessor B { bufB, cgh, read_only };

accessor C { bufC, cgh, write_only };

cgh.parallel_for(range<2> {N, N}, [=](id<2> idx) {

int row = idx[0];

int col = idx[1];

float sum = 0.0f;

for (int k = 0; k < N; k++) {

sum += A[row][k] * B[k][col];

}

C[row][col] = sum;

});

});

▶ Global Range: Defines the 2D execution space.

▶ Kernel Logic: Each work-item calculates one matrix element.

▶ Challenge: Inefficient due to repeated data loads.



Optimized Matrix Multiplication with ND-Range

▶ Work-Item Role: Each work-item computes an element in
the result matrix by accessing a full row of A and a full
column of B.

▶ Data Reuse: Unlike the naive approach, work-items in a
work-group can reuse data from shared memory, improving
memory access locality and reducing redundant loads.



Optimized Matrix Multiplication with ND-Range: Code
Q.submit([&](handler &cgh) {

accessor A { bufA, cgh, read_only };

accessor B { bufB, cgh, read_only };

accessor C { bufC, cgh, write_only };

range<2> global {N, N};

range<2> local {B, B};

cgh.parallel_for(nd_range<2>(global, local), [=](nd_item<2> it)

{↪→
int row = it.get_global_id(0);

int col = it.get_global_id(1);

float sum = 0.0f;

for (int k = 0; k < N; ++k) {

sum += A[row][k] * B[k][col];

}

C[row][col] = sum;

});

});

▶ ND-range: Divides the workload into work-groups.
▶ Memory Locality: Shared data within work-groups allows

optimized memory access.
▶ Improvement: Reduces redundant memory loads, leveraging

better performance.



Optimized Matrix Multiplication Explained

▶ Global Range: Defines the total execution grid (e.g., N ×N).

▶ Local Range: Specifies the size of each work-group (e.g.,
B × B).

▶ Work-Groups: Allow work-items to share data in local
memory.

▶ Key Insight: Data locality reduces memory traffic
significantly.

▶ Result: Improved performance due to fewer redundant loads
and better utilization of hardware capabilities.



Important Note: Don’t Reinvent the Wheel!

Use Optimized Libraries

Matrix Multiplication and similar operations are fundamental but
computationally intensive.

▶ SYCL is great for learning or custom optimizations.

▶ For production: Use optimized BLAS libraries like oneAPI.

Why?

▶ Expert-tuned for specific hardware (e.g., CPUs, GPUs).

▶ Advanced optimizations like vectorization and memory reuse.

▶ Orders of magnitude faster and more reliable.



Summary

▶ Work-items: Basic units of execution.

▶ Work-groups: Enable data sharing and synchronization
within groups.

▶ ND-ranges: Define computational grids with control over
locality.

▶ Data-parallel kernels: Achieved with parallel for.

▶ Matrix Multiplication: Optimized kernels improve memory
access patterns and performance.


	Session Objectives
	Work-Items, Work-Groups, and ND-Ranges
	Basic Data-Parallel Kernels
	Matrix Multiplication
	Summary

