
Foundations

André Cerqueira

FCUP

2024

Este trabalho foi financiado por: Projeto 10110190 – EUROCC2, com apoio financeiro da FCT/MCTES através de
fundos nacionais (PIDDAC).



Performance Trend over the Years



Performance Trend over the Years

▶ In the past, programmers could rely on innovations in
hardware, architecture and compilers to double performance of
their programs every 2 years without having to change a line
of code.

▶ As of 2006, the manufacturer’s solution was to start having
multiple processors per chip, generically called multicore
processors, where the benefit is often more on throughput
than on response time and go for parallel computing.



Why Go Parallel ?

Major Reasons:

▶ Reduce the execution time

▶ Be able to solve larger and more complex problems

Other Important Reasons:

▶ Computing Resources are frequently under-utilized

▶ Overcome the physical limitations in chip density and
production costs of faster sequential computers



Throughput / Latency

Throughput:

▶ Number of computing tasks
per time unit

▶ ie: 1000 credit card
payments in a minute.

Latency:

▶ Delay between invoking the
operation and getting the
response.

▶ ie: time taken to process a
credit card transaction.

When optimizing performance, an improvement in one factor (such
as throughput) may lead to the worsening in another factor (such
as latency).



Sequential Computing

Sequential computing occurs when a problem is solved by
executing one flow of instructions in one processing unit.



Concurrency

A program exhibits concurrency (or potential parallelism) when it
includes tasks (contiguous parts of the program) that can be
executed in any order without changing the expected result.



Parallel Computing

Parallel computing occurs when a problem is decomposed in
multiple parts that can be solved concurrently
Each part is still solved by executing one flow of instructions in one
processing unit but, as a whole, the problem can be solved by
executing multiple flows simultaneously using several processing
units..



Implicit Parallelism

Parallelism is exploited implicitly when it is the compiler and the
runtime system that:

▶ Automatically detect potential parallelism in the program

▶ Assign the tasks for parallel execution

▶ Control and synchronize execution

Advantages and disadvantages:

▶ (+) Frees the programmer from the details of parallel
execution

▶ (+) More general and flexible solution

▶ (–) Very hard to achieve an efficient solution for specific
problem



Explicit Parallelism

Parallelism is exploited explicitly when it is left to the programmer
to:

▶ Annotate the tasks for parallel execution

▶ Assign tasks to the processing units

▶ Control the execution and the synchronization points

Advantages and disadvantages:

▶ (+) Experienced programmers achieve very efficient solutions
for specific problems

▶ (–) Programmers are responsible for all details of execution

▶ (–) Programmers must have deep knowledge of the computer
architecture to achieve maximum performance



Heterogeneous Systems

▶ Heterogeneous computing involves the integration of various
types of processors within a single computational framework.

▶ It enables tasks to be allocated to processors best suited for
them, enhancing performance and expanding application
possibilities.



Heterogeneous Systems

Figure: CPU + GPU heterogeneous system

▶ Uses various processor types within one framework.

▶ Allocates tasks to the most suitable processor.



Heterogeneous Systems

Challenges:

▶ Distributing workloads across multiple processors has been
complex.

▶ Managing different processor types add complexity and
requires additional effort.

Solutions:

▶ Streamlined Programming: Language that simplifies workload
distribution.

▶ Unified Frameworks: Development of frameworks that
abstract the complexity of heterogeneous architectures, easing
adoption.

Overcoming these barriers paves the way for broader adoption of
heterogeneous computing, unlocking its potential for various
applications, including high performance computing (HPC).



Heterogeneous Systems

Challenges:

▶ Distributing workloads across multiple processors has been
complex.

▶ Managing different processor types add complexity and
requires additional effort.

Solutions:

▶ Streamlined Programming: Language that simplifies workload
distribution.

▶ Unified Frameworks: Development of frameworks that
abstract the complexity of heterogeneous architectures, easing
adoption.

Overcoming these barriers paves the way for broader adoption of
heterogeneous computing, unlocking its potential for various
applications, including high performance computing (HPC).



Heterogeneous Systems

Challenges:

▶ Distributing workloads across multiple processors has been
complex.

▶ Managing different processor types add complexity and
requires additional effort.

Solutions:

▶ Streamlined Programming: Language that simplifies workload
distribution.

▶ Unified Frameworks: Development of frameworks that
abstract the complexity of heterogeneous architectures, easing
adoption.

Overcoming these barriers paves the way for broader adoption of
heterogeneous computing, unlocking its potential for various
applications, including high performance computing (HPC).



And that’s why Sycl was created!


