
Conway’s Game of Life in SYCL

André Cerqueira

November 29, 2024

Este trabalho foi financiado por: Projeto 10110190 – EUROCC2, com apoio financeiro da FCT/MCTES através de
fundos nacionais (PIDDAC).



Introduction to Conway’s Game of Life

▶ Created by mathematician John Conway in 1970.

▶ Simulates how cells on a 2D grid evolve based on simple rules.
▶ Cells can either be:

▶ Alive (1), or
▶ Dead (0).

▶ Produces complex patterns despite its simplicity.



Rules of the Game

▶ Each cell’s next state depends on its 8 neighbors.
▶ Rules:

1. Survival: A live cell with 2 or 3 live neighbors stays alive.
2. Death: A live cell with fewer than 2 or more than 3 live

neighbors dies.
3. Birth: A dead cell with exactly 3 live neighbors becomes alive.

▶ Key concept: Simple local rules lead to emergent global
behavior.



Toroidal Grid Wrapping with Modulo Arithmetic

▶ Grid wrapping ensures that edges connect to the opposite
sides, treating the grid as a torus.

▶ A cell at the edge (top, bottom, left, or right) interacts with
cells on the opposite edge.

▶ Key Insight: Use modulo arithmetic to compute wrapped
indices.



Example: Neighbors for cell (0, 0) at the top-left corner:
(N-1, N-1) (N-1, 0) (N-1, 1)

(0, N-1) (0, 0) (0, 1)

(1, N-1) (1, 0) (1, 1)

Formula: For a neighbor at offset (dx , dy):

nx = (x + dx + N)%N, ny = (y + dy + N)%N

▶ Explanation:
▶ Adding N ensures no negative indices.
▶ Modulo N wraps the index to stay within the grid.



Exercise Overview

▶ Objective: Implement Conway’s Game of Life in SYCL.
▶ Tasks:

1. Initialize a random grid of size N × N.
2. Write a kernel to compute the next generation.
3. Handle grid wrapping using modulo arithmetic.
4. Implement Game of Life rules.
5. You can use either:

▶ Unified Shared Memory (USM), or
▶ Buffers with Accessors.



SYCL Implementation Tips

▶ Parallelism:
▶ Use a 2D ND-range for grid computation.
▶ Each work item computes the next state of one cell.

▶ Memory Management:
▶ USM: Use malloc_shared for shared memory.
▶ Buffers: Use buffer objects with accessor.

▶ Debugging:
▶ Use the DEBUG flag to enable optional debugging output

(e.g., neighbor counts).



Example

Initial Grid:

1 0 0 1

0 1 1 0

0 1 0 0

1 0 1 1

Neighbor Counts:

1 2 3 1

2 2 3 3

2 3 4 2

3 2 3 2

Next Generation:

0 1 1 0

1 1 1 1

0 0 1 0

1 0 1 1


