
Queues and Device Discovery in SYCL

André Cerqueira

15 November

Funded by Project 10110190 – EUROCC2, with support from FCT/MCTES via national funds (PIDDAC).



Objectives for Today

▶ Learn about queues.

▶ Querying Device Information: Querying specific features
like memory, atomic support, etc.

▶ Standard and Custom Device Selectors: Built-in selectors
and writing custom ones.



What is a SYCL Queue?

▶ A queue connects the host program to a specific device.

▶ All device code is submitted to a queue for execution.
▶ Each queue maps to one device:

▶ Cannot manage multiple devices.
▶ Cannot distribute work across devices.

▶ Multiple queues can target the same device.



Creating and Using a SYCL Queue

auto Q = queue{my_selector{}};

▶ Create a queue using a device selector.

▶ Then we can submit work using parallel for, submit, or
other queue methods.



Using Device Selectors

▶ Device selectors allow us to target specific types of devices:
▶ default selector: Implementation-defined default.
▶ cpu selector: Targets a CPU device.
▶ gpu selector: Targets a GPU device.
▶ accelerator selector: For accelerators like FPGAs.



Key Features of SYCL Queues

▶ Queues are central to work submission in SYCL.
▶ Many-to-One Mapping:

▶ Many queues can target the same device.

▶ Flexibility:
▶ Declare as many queues as needed.
▶ It makes it easier for the programmer to send work to as many

devices as they want.



Why Device Discovery in SYCL?

▶ SYCL supports heterogeneous computing devices (CPUs,
GPUs, FPGAs).

▶ Device discovery allows us to make informed choices about
device usage.

▶ Querying devices ensures our code is adaptable and performs
optimally.



Querying Device Information: get info

▶ SYCL’s get info template lets you retrieve key device
information.

▶ Examples of device parameters:
▶ info::device::global mem size - Global memory size.
▶ info::device::max compute units - Number of compute

units.
▶ info::device::name - Device name.

auto name = Q.get_device().get_info<sycl::info::device::name>();

std::cout << "Device Name: " << name << std::endl;



Note on info namespace

▶ The ‘info::‘ namespace is vast.

▶ We can use it to querie many aspects of SYCL code at
runtime using get info, not just for devices. We can use it also
to querie platform, context, queue, event and kernels also
offer a get info method.



Creating Custom Device Selectors

▶ Custom device selectors provide more control for selecting
devices.

▶ Use custom selectors to filter devices based on specific criteria.

▶ Implemented by inheriting device selector and overriding
its function-call operator.

▶ The method takes a device object and returns a score for it:
▶ The score is an integer value; the highest score gets selected.
▶ The runtime calls this method once for each accessible device

to rank them by score.
▶ Devices are excluded from the ranking if their score is negative.



Example: Custom Device Selector

class my_selector : public device_selector {

public:

int operator()(const device &dev) const override {

if (dev.is_gpu()) {

auto vendorName = dev.get_info<info::device::vendor>();

if (vendorName.find("Intel") != std::string::npos) {

return 1; // Prioritize Intel GPUs

}

}

return -1; // Lower priority for other devices

}

};

auto Q = queue { my_selector{} };

▶ This selector prioritizes Intel GPUs when available.



Using Aspects for Device Capabilities

▶ The standard defines the aspect selector function, which
return a selectors based on desired device aspects.
▶ aspect::usm device allocations - Unified Shared Memory

support.
▶ aspect::fp16 - Half-precision floating-point support.
▶ aspect::atomic64 - 64-bit atomic operations.

▶ Aspects help ensure devices meet application requirements.



Example: Using Aspect Selector

▶ The example selects devices that support both USM and
FP16.

▶ Useful for applications relying on specific hardware features.
auto my_selector = aspect_selector(

aspect::usm_device_allocations,

aspect::fp16);

queue Q(my_selector);



Best Practices for Portability

▶ Use device selectors and custom selectors for flexible device
management.

▶ Avoid hardcoding device-specific features; instead, use
get info and aspects.



Summary

▶ SYCL Queues: Central to work submission, connecting the
host to a specific device.

▶ Selectors:
▶ Built-in selectors provide convenience for targeting common

devices.
▶ Custom selectors allow fine-grained control, enabling

prioritization and flexibility.

▶ Runtime Queries: The versatile get info function retrieves
key information for devices, platforms, queues, and more.

▶ Aspects: Enable filtering devices based on specific
capabilities, ensuring hardware compatibility with application
requirements.


