
Data Management with Buffers, Accessors, and
Unified Shared Memory in SYCL

André Cerqueira

November 22, 2024

Este trabalho foi financiado por: Projeto 10110190 – EUROCC2, com apoio financeiro da FCT/MCTES através de
fundos nacionais (PIDDAC).



Introduction

▶ SYCL offers facilities for managing memory in heterogeneous
environments.

▶ Focus on buffer and accessor APIs, and Unified Shared
Memory (USM).

▶ SYCL runtime manages memory, easing development and
reducing bugs.



Buffers Overview

▶ Buffers in SYCL are abstractions for managing memory.

▶ They represent data that can be accessed on both host and
device.

▶ Buffers simplify memory management by handling data
transfers automatically.



Creating Buffers

▶ Buffers are constructed by:
▶ Specifying their size.
▶ Providing a view of the memory they manage.

▶ The buffer class:
▶ Is templated over the type of the underlying memory.
▶ Supports dimensionality (1D, 2D, or 3D).

▶ The size of the buffer is specified using a range object:
▶ ranges are also used to express parallelism in SYCL.

▶ Detailed usage of ranges in parallelism is covered in the next:
int N = 1024;

std::vector<int> data(N);

buffer<int, 1> buf(data.data(), range<1>(N));



Buffer Lifetime

▶ Buffers manage data movement between host and device.

▶ SYCL ensures data coherence through buffer destructors.

▶ Destructor of a buffer blocks until all commands using it are
finished.

▶ This guarantees that all operations on the buffer are complete
before destruction.



Buffer Lifetime

int main() {

constexpr size_t N = 1024;

{

queue q;

buffer<int, 1> buf(range<1>{N});

q.submit([&](handler& cgh) {

accessor acc(buf, cgh, write_only, no_init);

cgh.parallel_for(range<1>(N), [=](id<1> i) {

acc[i] = i[0];

});

}).wait();

host_accessor acc(buf, read_only);

std::cout << "Buffer[0]: " << acc[0] << std::endl;

} // Buffer is destroyed here

// After this point, 'buf' is no longer accessible.



Buffer Properties

▶ Buffers can be read-only, write-only, or read-write.

▶ Access modes are specified when creating accessors.

▶ Buffers support different data types and dimensions.

▶ Efficiently handle data transfers and synchronization.



Using Buffers in Kernels

▶ Accessors are used to access buffer data in kernels.

▶ Example: Creating an accessor within a command group.
q.submit([&](handler &cgh) {

accessor<int, 1, access::mode::read> aA(buf, cgh);

cgh.parallel_for<class simple_kernel>(

range<1>(N), [=](id<1> i) {

// Kernel code using aA

});

});



Implicit Data Movement

▶ Buffers and accessors manage data movement implicitly.

▶ No explicit memory transfer code is required.

▶ SYCL handles the synchronization and data transfer between
host and device.



Host Accessors

▶ Host accessors provide a way to access buffer data on the
host.

▶ They synchronize data between device and host when created.

▶ Example: Using a host accessor to read buffer data on the
host.

{

host_accessor h_acc(buf);

for (int i = 0; i < N; i++) {

std::cout << h_acc[i] << " ";

}

}



Explicit Data Movement

▶ While SYCL handles most data movement implicitly, explicit
control is possible.

▶ Buffer objects can be explicitly copied between host and
device using command groups.

▶ Useful for optimizing performance or handling specific
synchronization requirements.



Example of Explicit Data Movement

▶ Example: Explicitly copying data from device to host.
q.submit([&](handler &cgh) {

auto d_acc = buf.get_access<access::mode::read>(cgh);

cgh.copy(d_acc, host_ptr);

}).wait();



Unified Shared Memory (USM)

▶ USM provides a pointer-based memory management approach.

▶ Allows direct access to memory from both host and device.

▶ Simplifies porting existing code to SYCL by using familiar
pointer semantics.



USM Memory Allocation

▶ Three types of USM allocations:
▶ Device Allocations: Memory physically located on the device.
▶ Host Allocations: Memory physically located on the host,

accessible by both host and device.
▶ Shared Allocations: Memory in a unified virtual address

space, accessible and migratable between host and device.



USM Allocation Examples

▶ Allocating device memory:
void* device_ptr = malloc_device(size_t numBytes, queue syclQueue);

▶ Allocating host memory:
void* host_ptr = malloc_host(size_t numBytes, queue syclQueue);

▶ Allocating shared memory:
void* shared_ptr = malloc_shared(size_t numBytes, queue syclQueue);



USM Typed Allocation Examples

▶ Typed allocation for device memory:
int* device_ptr = malloc_device<int>(size_t count, queue syclQueue);

▶ Typed allocation for host memory:
int* host_ptr = malloc_host<int>(size_t count, queue syclQueue);

▶ Typed allocation for shared memory:
int* shared_ptr = malloc_shared<int>(size_t count, queue syclQueue);



USM Data Management

▶ USM allows direct manipulation of memory.

▶ Memory initialization with memset and fill.

▶ Example: Initializing USM memory with fill.
queue Q;

auto x = malloc_device<double>(256, Q);

fill(x, 42.0, 256);



USM Data Movement

▶ USM supports explicit and implicit data movement.

▶ Explicit data movement with memcpy and copy.

▶ Implicit data movement for host and shared allocations.



Explicit Data Movement

▶ Example: Explicitly copying data from host to device.
queue Q;

std::vector<double> x_h(256);

auto x_d = malloc_device<double>(256, Q);

// Explicit data copy

Q.submit([&](handler& cgh) {

cgh.memcpy(x_d, x_h.data(), 256 * sizeof(double));

}).wait();



Implicit Data Movement

▶ Host and shared allocations benefit from implicit data
movement.

▶ Example: Accessing host and shared memory in a kernel.
constexpr auto N = 256;

queue Q;

auto x_h = malloc_host<double>(N, Q);

auto x_s = malloc_shared<double>(N, Q);

for (auto i = 0; i < N; ++i) {

x_h[i] = static_cast<double>(i);

}

Q.submit([&](handler& cgh) {

cgh.parallel_for(range<1>(N), [=](id<1> i) {

x_s[i] = x_h[i] + 1.0;

});

}).wait();



Buffer-Accessor Model vs Unified Shared Memory

▶ The choice between buffer-accessor model and USM depends
on the level of control needed over data transfers.

▶ Buffer-Accessor Model: Managed by the SYCL runtime
which automates data transfers and minimizes programming
errors.

▶ Unified Shared Memory (USM): Offers direct control over
memory, suitable for porting existing codes using pointers,
providing a familiar programming approach.

▶ Considerations:
▶ Comfort with runtime managing data movement.
▶ Compatibility with existing codebases.

▶ Current SYCL standards do not support interoperability
between buffers and USM, which may lead to performance
issues.

▶ Extensions like hipSYCL provide buffer-USM interoperability
as an additional feature.



Summary

▶ Buffers and accessors simplify memory management in SYCL.

▶ USM provides a pointer-based approach for direct memory
access.

▶ Both supports both explicit and implicit data movement.

▶ Choosing the right memory model depends on the use case
and programmers preference.


