
Cpp Introduction

André Cerqueira

FCUP

2024

Este trabalho foi financiado por: Projeto 10110190 – EUROCC2, com apoio financeiro da FCT/MCTES através de
fundos nacionais (PIDDAC).



Structure of a C++ Program

#include <iostream>

void greet() {

std::cout << "Welcome to SYCL

Learning!" << std::endl;↪→
}

int main() {

std::cout << "Hello, C++ World!"

<< std::endl;↪→
greet();

return 0;

}

▶ Comments:
▶ Can be added anywhere

in the code
▶ Single-line: //
▶ Multi-line: /* */

▶ Compiler Directives
▶ #include tells the

compiler to include
libraries.

▶ main() Function
▶ Starting point of

execution for the program
▶ Statements end with a

semicolon (;)
▶ Typically ends with

return 0; to indicate
successful execution



Fundamental Data Types

▶ In C++, constants and variables have specific types, which
define the kind of data they can hold and the range of values
they represent.

char A character or small integer, typically used to store
ASCII characters. Range: −128 to 127

int Standard integer type. Range: −231 to 231 − 1

float Single-precision floating-point number. Precision: 7
digits

double Double-precision floating-point number. Precision:
15 digits

bool Boolean type, represents true or false

▶ Larger or specialized types are available, like ‘short int‘ and
‘long int‘, to represent different ranges of values.



Arithmetic Operators

▶ Basic arithmetic operators are used for both integer and
floating-point types:

+ Addition: Adds values, e.g., 2 + 5
− Subtraction: Subtracts values, e.g., 41− 32
∗ Multiplication: Multiplies values, e.g., 4.23 ∗ 3.1e − 2
/ Division: Divides values. Integer division drops the

remainder (e.g., 10/3 = 3), while floating-point
division gives a precise result (e.g.,
10.0/3 = 3.333...)

% Modulus: Finds the remainder after division, only for
integers (e.g., 17%5 = 2)

▶ Note: Division behaves differently for integer vs.
floating-point types.



C++ Input and Output

▶ Include <iostream> for input and output functions (cout
and cin).

▶ Output (cout)
▶ Use cout with << to print values; add << between different

values or types.
▶ cout does not add spaces automatically: add them as needed.

▶ Input (cin)
▶ Use cin with >> to read values into variables from the user.
▶ cin skips leading whitespace and stops at trailing whitespace.

Example Output (cout):
#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {

int x = 5; char c = 'Y'; double

y = 4.5;↪→
cout << "Hello world" << endl;

cout << " c = " << c << "\ny is "

<< y << endl;↪→
return 0;

}

Example Input (cin):
#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {

int x; char c; double y;

cout << "Enter an integer and

double separated by spaces: "

<< endl;

↪→
↪→
cin >> x >> c >> y;

return 0;

}



Understanding Pointers

▶ Pointers are variables that store memory addresses.

▶ Each pointer has a type (e.g., char, int, double), which
determines the size of data it points to.

▶ A pointer’s type affects how far it moves in memory when
incremented.



Pointer Arithmetic

Pointer Arithmetic Operations
▶ p++: Move to the next memory location for the pointer’s type.
▶ *p: Access the value at the current address.
▶ *p++: Increment the pointer, then access the new location.
▶ (*p)++: Access the value, then increment the value itself.

Figure: Memory blocks for different pointer types



Arrays vs. std::vector

C-style Array

▶ Fixed-size, defined at
compile-time.

▶ Memory is contiguous, but
size cannot be changed.

▶ Syntax: int arr[5];

▶ Faster access but lacks
flexibility.

std::vector

▶ Dynamic size, can be resized
at runtime.

▶ Automatically manages
memory.

▶ Syntax: std::vector<int>
vec;

▶ Provides flexible methods
(e.g., .push back()).



C-style Array Example

C-style Array Code:

▶ Fixed-size array.

▶ Demonstrates declaration, initialization, and accessing
elements.

#include <iostream>

int main() {

int arr[5] = {1, 2, 3, 4, 5};

for (int i = 0; i < 5; ++i) {

std::cout << "Element " << i << ": " << arr[i] << std::endl;

}

return 0;

}



std::vector Example

std::vector Code:

▶ Dynamic-size vector.

▶ Demonstrates adding elements and accessing them.
#include <iostream>

#include <vector>

int main() {

std::vector<int> vec;

vec.push_back(1);

vec.push_back(2);

vec.push_back(3);

vec.push_back(4);

vec.push_back(5);

for (int i = 0; i < vec.size(); ++i) {

std::cout << "Element " << i << ": " << vec[i] << std::endl;

}

return 0;

}



Lambda Expressions in C++

What are Lambda Expressions in C++?

▶ Anonymous Functions: Inline, unnamed functions that can
be defined directly within code.

▶ Inspired by Lambda Calculus: Implement function
abstraction, allowing the definition of functions as expressions.

▶ Usage in C++: Useful for short, temporary functions, often
passed as parameters in algorithms (e.g., ‘std::sort‘,
‘std::for each‘).

Advantages of Lambda Expressions

▶ Enable cleaner, more concise code, especially for functional
programming patterns.

▶ Allow capturing variables from the surrounding scope for
flexible usage.

▶ Useful in parallel computing contexts, such as SYCL, for
defining operations inline.



Syntax of Lambda Expressions in C++

Lambda Expression Syntax:

▶ General syntax: [capture](parameters) { body };
▶ Example: auto add = [](int x, int y) { return x +

y; };
▶ Capture: Specifies variables from the surrounding scope.



Examples of Lambda Expressions in C++

Examples of C++ Lambda Expressions:

1. Basic Lambda
[]() { std::cout << "Hello, World!"; };

2. Lambda with Parameters
[](int x) { return x * x; };

3. Using Capture
[a](int x) { return x + a; };



Memory Management in C++

Memory Management in C++
▶ Static vs. Dynamic Memory:

▶ Static Memory : Allocated at compile-time (e.g., arrays with
fixed size).

▶ Dynamic Memory : Allocated at runtime using new and
delete.

▶ Dynamic Allocation:
▶ Use new to allocate memory and delete to free it.
▶ Example: int* ptr = new int[10];

delete[] ptr;

▶ Smart Pointers (C++11):
▶ Automatically manage memory and prevent memory leaks.
▶ Types: std::unique ptr, std::shared ptr,

std::weak ptr.



Importance of Memory Management

Why is Memory Management Important?

▶ Essential for performance-critical applications, like those in
SYCL.

▶ Prevents memory leaks and undefined behavior by properly
managing resources.

▶ Smart pointers reduce the need for manual memory
management, enhancing code safety and robustness.

▶ Efficient memory usage directly impacts performance,
especially in parallel and high-performance computing.



Memory Management in C++: Code Example

Code Example: Dynamic Allocation and Smart Pointers
int* ptr = new int[5];

for (int i = 0; i < 5; ++i) {

ptr[i] = i * 2;

}

delete[] ptr;

#include <memory>

std::unique_ptr<int[]> uniquePtr(new int[5]);

for (int i = 0; i < 5; ++i) {

uniquePtr[i] = i * 3;

}

std::shared_ptr<int> sharedPtr = std::make_shared<int>(10);

std::weak_ptr<int> weakPtr = sharedPtr;



Thank You!

Thank You!

Questions?


